

THE STRUCTURE AND STEREOCHEMISTRY OF A TRITERPENE ACID FROM *LANTANA CAMARA*

SARMILA ROY and A. K. BARUA

Department of Chemistry, Bose Institute, Calcutta 9, India

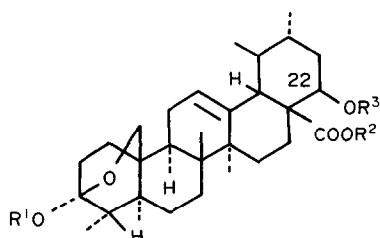
(Received 26 June 1984)

Key Word Index—*Lantana camara*; Verbenaceae; triterpene; lantoic acid.

Abstract—The structure of lantoic acid, a new triterpene isolated from the leaves of *Lantana camara*, has been determined as 3,25-epoxy-3 α ,22 β -dihydroxy-ursa-12-ene-28-oic acid by chemical and spectroscopic means.

INTRODUCTION

The isolation of three new triterpene acids, lantanolic acid [1, 2], lantic acid [3, 4] and lantanilic acid [5, 6], has been reported from this laboratory. Several new triterpenes from *Lantana Camara* L. have been reported by John *et al.* [7] and Noel and co-workers [8]. The present paper reports the structure of another new triterpene acid, called lantoic acid (**1a**), from the petrol extract of the same plant.

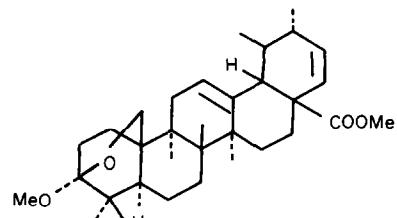

RESULTS AND DISCUSSION

Lantoic acid (**1a**) was isolated in pure form as its methyl ester (**1b**), $C_{31}H_{48}O_5$, mp 208°, $[\alpha]_D^{23} + 127.8^\circ$ ($CHCl_3$) from a lantoic acid sample obtained by column chromatography and TLC on silica gel of the unsaponifiable lipid fraction of the crude triterpene acid mixture from a petrol extract of *L. camara*. It gave a pale yellow colour with tetranitroaniline and its UV spectrum showed maxima at 207 nm ($\log \epsilon$ 3.8) indicating the presence of a tri-substituted double bond. The mass spectrum of methyl lantoate (**1b**) showed the $[M]^+$ peak at m/z 500 and a strong peak at m/z 482 $[M - H_2O]^+$. The mass spectral fragmentation pattern of methyl lantoate [m/z 482, 260 (**a**), 299 (**b**) and 239 (**c**)] was very similar to that of methyl lantanilinate [6] (m/z 482, 260, 299 and 239). Methyl lantoate formed a ketal (**1c**), $C_{32}H_{50}O_5$ ($[M]^+$ m/z 514), mp 201–202° (dec.), on reflux with methanolic sulphuric acid, which on treatment with dilute hydrochloric acid in tetrahydrofuran gave back methyl lantoate (cf. methyl lantanilinate) [6] and methyl lantate [3].

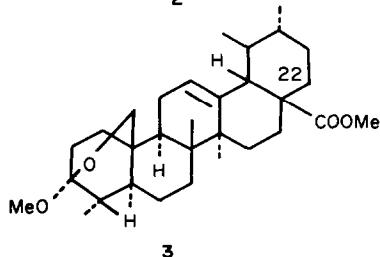
The ketal (**1c**) on acetylation with pyridine and acetic anhydride yielded an amorphous monoacetate (**1d**), $C_{34}H_{52}O_6$. The ketal (**1c**) on treatment with $POCl_3$ in pyridine gave the dehydro compound **2** which was not isolated in a pure state but was hydrogenated over Adam's catalyst. The product thus obtained was identified as the ketal (**3**) of methyl lantate. This proved the structure of lantoic acid except for the position of the secondary hydroxyl group.

Formation of the ion species **a**, **b** and **c** in the mass spectrum of methyl lantoate clearly showed the presence of the secondary hydroxyl group either in ring D or in ring E of methyl lantoate. The 1H NMR spectrum ($CDCl_3$, 90 MHz) of methyl lantoate was very similar to that of

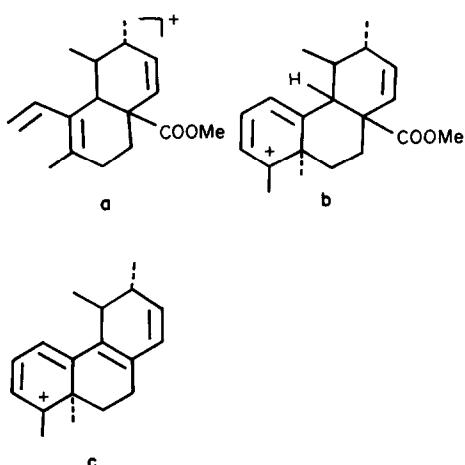
methyl lantate, except for the signal for $H-22\alpha$ which was merged with the signal centred at δ 3.89 for one of the protons of the hemiketal system. It showed two pairs of doublets centred at δ 4.26 (1H, $J = 9$ Hz) and 3.89 (1H, J



1a $R^1 = R^2 = R^3 = H$


1b $R^1 = R^3 = H$, $R^2 = Me$

1c $R^1 = R^2 = Me$, $R^3 = H$


1d $R^1 = R^2 = Me$, $R^3 = Ac$

2

3

= 9 Hz) for the two non-equivalent methylene protons ($-\text{CH}_2-\text{O}-\text{C}-\text{O}-$) of the hemiketal system. These two signals were further split ($J = 2.5$ Hz and 1 Hz respectively) due to long-range coupling with one of the C-1 protons. A sharp singlet at δ 3.65 (3H, $-\text{COOMe}$) and a multiplet at δ 5.35 (1H) were due to the carbomethoxyl group and the C-12 vinyl proton, respectively. The ^1H NMR spectrum in the high-field region showed five sharp singlets at δ 0.70 (3H), 0.90 (3H), 0.97 (6H), 1.03 (3H) and 1.07 (3H) corresponding to the six tertiary methyl groups. This portion of the spectrum was very similar to that of methyl lantate [3]. The appearance of the highest methyl signal at δ 0.70 indicated the presence of a carbomethoxyl group at C-17, since the highest methyl signal in triterpenes of the oleanane and ursane series having a carbomethoxyl group at C-17 appears upfield from δ 0.775 [9].

The ^1H NMR spectrum (CDCl_3 , 90 MHz) of the acetate (**1d**) showed a signal at δ 4.97 (1H, $J = 3$ Hz) for $\text{H}-22\alpha$ (cf. δ 4.95 for the $\text{H}-22\alpha$ in the ^1H NMR spectrum of the monoacetate of methyl lantanilate [6]). The low coupling constant ($J = 3$ Hz) indicated an axial β -orientation of the secondary hydroxyl group at C-22. It

may be pointed out that in all triterpenes having a secondary hydroxyl group in ring E isolated from *L. camara*, the secondary hydroxyl group is invariably located at C-22. In some cases, the 22-OH was esterified with β,β -dimethyl acrylic acid, tiglic acid or angelic acid.

Most probably lantoic acid (**1a**) does not occur as such in the plant but occurs as its 22 β -acryloyl, 22 β -angeloyl or 22 β -tigloyl derivative. This conclusion has been drawn because TLC of the crude triterpene acid fraction obtained from the petrol extract of the leaves of *L. camara* did not show any spot corresponding to that of lantoic acid.

Thus the spectral data and other data presented above indicate the structure of lantoic acid to be **1a**.

Acknowledgements—We are indebted to Dr A. Patra, Department of Chemistry, University College of Science and Technology, Calcutta and to Dr. A. Chatterjee, RSIC, Bose Institute, Calcutta for the NMR and mass spectra, respectively. One of the authors (S.R.) is indebted to the authorities of the Bose Institute for a research fellowship.

REFERENCES

1. Barua, A. K., Chakrabarti, P., Dutta, S. P., Mukherjee, D. K and Das, B. C. (1966) *Sci. Cult.* **32**, 456.
2. Barua, A. K. Chakrabarti, P., Dutta, S. P., Mukherjee, D. K and Das, B. C. (1971) *Tetrahedron* **27**, 1141.
3. Barua, A. K., Chakrabarti, P., Sanyal, A. K. and Das, B. C (1969) *J. Indian Chem. Soc.* **46**, 100
4. Barua, A. K., Chakrabarti, P., Sanyal, P. K., Basu, K. and Nag, K. (1972) *J. Indian Chem. Soc.* **49**, 1063
5. Barua, A. K. (1975) Paper presented at the Symposium on Chemistry, Biochemistry and Biogenesis of Natural Products, sponsored jointly by Indian National Science Academy and Calcutta University.
6. Barua, A. K., Chakrabarti, P., Chowdhury, M. K., Basak, A. and Basu, K. (1976) *Phytochemistry* **15**, 987.
7. John, S. R., Lamberton, J. A., Morton, T. C., Saures, H. and Willing, R. I. (1983) *Aust. J. Chem.* **36**, 1895.
8. Noel, K. H., Lamberton, J. A., Siousmis, A. A. and Saures, H (1976) *Aust. J. Chem.* **29**, 655.
9. Shamma, M., Glick, R. E. and Mamma, R. O. (1962) *J. Org. Chem.* **27**, 4512.